
HashiCorp Vault Enterprise
on Exoscale

HashiCorp User Group (HUG) Meetup
08.12.2022

 in
cl. De

mo 🚀

Plan. Innovatively | Build. Sustainably | Run. Resiliently

Potential. Unlocked

HIGH

AVAILABILITY

SECRETS ENGINESTERRAFORM
MODULES

DYNAMIC CREDENTIALS

APP OF APPS

SKS

SELF-SERVICE

RAFT

KEY CEREMONIES

REPLICATIONAUTO
UNSEALING

FAILOVER

TTL

Andreas Gruhler

System Engineer

Adfinis

Zurich, Switzerland

andreas.gruhler@adfinis.com

github.com/in0rdr

Terraform in GitLab Pipelines

〉 Exoscale API key in the CI/CD variables as the inputs
〉 Terraform Docker image by GitLab with batteries included (e.g., jq)
〉 Terraform integration in merge requests with Terraform plan widget
〉 Kubeconfig as the final output artifact for download

⚠ Ensure permissions for CI/CD
input variables, Terraform state
and sensitive Kubeconfig pipeline
artifacts

https://docs.gitlab.com/ee/user/infrastructure/iac/mr_integration.html
https://docs.gitlab.com/ee/user/permissions.html

Argo CD: Apps and Projects

AppProjects Repository

Helm
Chart VCS (Git)

Application

ApplicationsApplication

Kubernetes
Resource

Input
Values YAML Template

Argo CD “App of Apps”

〉 Declaratively specify one Argo CD app that consisting of other apps
〉 Each Application can contain several Helm Charts
〉 The Applications can be used to organize Charts thematically
〉 Adfinis example: https://github.com/adfinis/helm-charts

https://argo-cd.readthedocs.io/en/stable/operator-manual/cluster-bootstrapping/#app-of-apps-pattern
https://github.com/adfinis/helm-charts

Opinionated Adfinis “App of Apps” Umbrella Charts

HashiCorp
Vault

Argo CD

ApplicationsApplication m

security-apps

infra-apps

Helm
Charts

n-apps

Aspect 👍 Good 👎 Bad

〉 Centralized
repository

A central repository presents a single point
for any configuration change

Maintenance is key. Otherwise, this translates to a
single point of failure and a dependency on the
Chart provider

〉 Documentation Documentation trail (changelogs)
and ease of navigation, add your own docs

Confusion with opinionated organisation of
Umbrella chart and upstream Charts

〉 Review process Consolidated 4-eye review from trusted sources Reviews from the upstream Chart only

〉 Testing ✌
Confidence and reliability through (end-to-end) tests
of the different categories (in union), organisation of
the changes in a way that “works well together”

Isolated tests through maintainers of upstream
Charts only

〉 Life cycle
management

Control the lifecycle of target revisions, structured
rollout of changes with 4-eye principle and
changelogs

No centralised lifecycle control for the upstream
Charts

〉 Communication Consolidated communication of bugs and changes Watch different upstream feeds for changes
〉 Opinionated

structure
Get used to a certain structure, same organisation on
different customer systems

All team members need to agree and get
comfortable with conventions and assumptions

Benefits and Consequences of Umbrella Charts

HashiCorp Vault Enterprise

The “tip of the HashiCorp Vault Enterprise Iceberg”:

〉 Disaster recovery replication
〉 Multi-tenancy with namespaces
〉 Automated integrated storage snapshots
〉 Enterprise secrets engines for Advanced Data Protection
〉 HSM integrations for unsealing, Seal wrapping and

entropy augmentation
〉 Performance standby nodes
〉 …

Trial licenses can be requested at https://vaultproject.io/trial

https://developer.hashicorp.com/vault/docs/enterprise
https://vaultproject.io/trial

Vault Integrated Storage and TLS

〉 HashiCorp Vault Enterprise requires
a (HA) Raft or Consul storage
backend

〉 Proper TLS certificates are a
prerequisites for joining nodes to a
Vault cluster (bootstrapping process)

〉 The cluster nodes join through the
internal Kubernetes service address
for Vault

Existing cluster
node(s)

New Raft node

Exoscal
Plugin

apiAddr

leader_tls_servername

unwrap

⚠ Misconfigured TLS certificates lead to problems when
nodes join the cluster, while working with advanced
features like plugins or during the DR replication setup.

https://www.vaultproject.io/docs/concepts/integrated-storage#integrated-storage-and-tls
https://github.com/hashicorp/vault-helm/blob/main/values.yaml
https://developer.hashicorp.com/vault/docs/configuration/storage/raft#leader_tls_servername

Dynamic Exoscale IAM Credentials with HashiCorp Vault

〉 Plug & play: Secret engine vs. auth backend plugins
〉 The plugin binary is injected into Vault server Pods through init containers
〉 The ⌛TTL of the dynamic API credentials are managed by leases
〉 Access to the secrets engines is secured by policies (principle of least privilege)

https://github.com/exoscale/vault-plugin-secrets-exoscale
https://developer.hashicorp.com/vault/docs/plugins/plugin-portal
https://developer.hashicorp.com/vault/docs/concepts/lease
https://developer.hashicorp.com/vault/docs/concepts/policies

Destroy the Cluster

〉 Destroy the Kubernetes objects (Argo CD) and Exoscale components managed
by the Cloud Controller Manager (CCM) first

https://www.exoscale.com/syslog/exoscale-kubernetes-cloud-controller-manager-release/

Code and Limitations

https://github.com/adfinis/sks-vault-demo

Limitations of the Demo Setup:

〉 No auto-unsealing
〉 No persistent data storage and no audit logs
〉 No Ingress: Vault API not exposed outside of the Kubernetes cluster
〉 No identity management and Vault policy
〉 Self-signed TLS certificate

https://github.com/adfinis/sks-vault-demo

Stay in Touch

/adfinis /adfinis adfinis.com info@adfinis.com /adfinis

https://twitter.com/adfinis
https://www.linkedin.com/company/adfinis-com/
https://adfinis.com
mailto:info@adfinis.com
https://github.com/adfinis

